
Minimum Spanning Trees
What is a MST (Minimum

Spanning Tree) and how to
find it with Prim’s

algorithm

and Kruskal’s

algorithm

Tree

What is a tree?

Root

Children of
root node

Spanning Tree
Find a subgraph with minimum
amount of edges.
There must be a path between
every pair of vertices.

This is called a spanning tree

Spanning Tree

Answer:

Spanning Tree
What is a spanning tree?

Contains all the vertices of the
graph and some or all of the edges
Path from any node to any other
node

Spanning Tree

This graph has

3 different
spanning trees

A graph can have lots of spanning
trees

Spanning Tree

Graph

T1 T2 T3

Spanning Tree
How many spanning trees does
this graph have?

Answer: 8

Minimum spanning tree
Suppose we add weights to the
graph
Find the spanning tree with the
minimum sum cost

1

5 2

3

Minimum spanning Tree

Graph

1

5 2

3

1 1

5

3

1

5 2

w(T1)=9 w(T1)=8w(T1)=6

2

3

Minimum spanning Tree

This is the minimum spanning tree
of the graph

Graph w(T1)=6

2

3

MST applications
MST’s can be applied to problems
like phone networks, computer
networks and trail networks

Sample problem
Farmer John has ordered a high
speed internet connection and is
going to share his connectivity with
the other farmers.
To minimize cost, he wants to
minimize the length of optical fiber
to connect his farm to all the other
farms

How to solve a MST
One way to solve a MST, is to find
all the spanning trees of the graph
and find the minimum one, but
•

the number of spanning trees
grows exponentially with the graph
size

•

Generating all spanning trees for a
weighted graph is not easy

Prim’s algorithm
One way to solve a MST is with Prim’s
algorithm
Prim’s algorithm builds a tree one vertex
at a time
Start by selecting a vertex randomly
On each iteration, simply add the nearest
vertex not in the tree connected to a
vertex in the tree
The algorithm stops when all the graph’s
vertices has been included in the tree
being constructed
This is a greedy algorithm

Prim’s algorithm

The algorithm
let T be a single vertex

while (T has fewer than n vertices)
{

find the smallest edge connecting a vertex
not in the tree to a vertex in the tree

add it to T
}

Prim’s algorithm
The algorithm with more detail:

1. Initialize MST to vertex 0.
2. priority[0] = 0
3. For all other vertices, set priority[i] = infinity
4. Initialize prioritySet to all vertices;
5. while prioritySet.notEmpty()
6. v = remove minimal-priority vertex from

prioritySet;
7. for each neighbor u of v
8. // Explore the edge.
9. w = weight of edge (v, u)
10 . if w < priority[u]
11 . priority[u] = w
12 . endif
13 . endfor
14 . endwhile

Running time: O(n2)

Prim’s algorithm
O(V2) is too slow when finding the
MST of a very large graph
Some data structures can be used
to speed it up
Use a heap to remember, for each
vertex, the smallest edge
connecting T with that vertex.

Prim’s algorithm (heap)
Prim’s algorithm with a heap:

make a heap of values (vertex,edge,weight(edge))
initially (v,-,infinity) for each vertex

let T be a single vertex x
for each edge f=(u,v)

add (u,f,weight(f)) to heap

while (T has fewer than n vertices)
let (v,e,weight(e)) be the edge with the

smallest weight on the heap
remove (v,e,weight(e)) from the heap
add v and e to T
for each edge f=(u,v)
if u is not already in T
find value (u,g,weight(g)) in heap
if weight(f) < weight(g)
replace (u,g,weight(g)) with

(u,f,weight(f))

Running time: O(m

+ n log n)

Prim’s algorithm
demonstration

Initially, place vertex 0 in the MST
and set the "priority" of each vertex
to infinity.

∞ ∞ ∞

∞ ∞

∞

∞

Prim’s algorithm
demonstration

Explore edges from current MST:
(0, 1) and (0, 2)

∞ ∞

∞ ∞

∞

Prim’s algorithm
demonstration

Pick lowest-weight edge (0, 1) to
add => same as selecting lowest-
priority vertex (vertex 1)

∞ ∞

∞

∞

∞

Prim’s algorithm
demonstration

Explore edges from newly-added
vertex: (1,3), (1,2)

∞

∞

∞

∞

Prim’s algorithm
demonstration

Pick vertex with lowest priority
(vertex 3) and explore its edges:

∞

∞

Prim’s algorithm
demonstration

Continuing, we add vertices 2, 4, 6,
5 and 7:

Kruskal’s algorithm
Another way to solve a MST is with
Kruskal’s algorithm
Kruskal is easier to code and easier to
understand
This is a greedy algorithm
Basics of algorithm:

Sort edges in order of increasing weight.
Process edges in sort-order.
For each edge, add it to the MST if it
does not cause a cycle.

Kruskal’s algorithm
More advanched algorithm:

1. Initialize MST to be empty;
2. Place each vertex in its own set;

3. Sort edges of G in increasing-order;
4. for each edge e = (u,v) in order
5. if u and v are not in the same set
6. Add e to MST;
7. Compute the union of the two sets;
8. endif
9. endfor
10. return MST

Running time: O(m

log m)

Kruskal’s algorithm
example

Initially:

Sort order of edges: (2, 3), (0, 1), (3, 4),
(1, 3), (4, 6), (3, 6), (1, 2), (0, 2), (2, 5),
(5, 7)

Kruskal’s algorithm
example

First edge to add joins "2" and "3" (no cycle):

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6),
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)

Kruskal’s algorithm
example

Next edge in sort order: (0, 1):

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6),
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)

Kruskal’s algorithm
example

Next edge in sort order: (3, 4):

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6),
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)

Kruskal’s algorithm
example

Next edge in sort order: (1, 3): merges two sets (union)

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6),
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)

Kruskal’s algorithm
example

Next edge in sort order: (4, 6):

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6),
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)

Kruskal’s algorithm
example

Next edge in sort order: (3, 6): cannot be added

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6),
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)

Next two edges also cannot be added: (0, 2) and (1, 2).

Kruskal’s algorithm
example

Finally, add (2, 5) and (5, 7):

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6),
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)

Time comparison

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

Size

Ti
m

e
(s

)

Prim
Kruskal
Prim (h)

Comparison
Prim with a heap is faster than
Kruskal, but Kruskal is easier to
code.
Code both and choose the one you
prefer.

Building Roads
(USACO Silver Dec. ’07 competition)

Building Roads
Farmer John had acquired several
new farms!
He wants to connect the farms with
roads so that he can travel from
any farm to any other farm via a
sequence of roads
Roads already connect some of
the farms.

Building Roads
(USACO Silver Dec. ’07 competition)

This can be done by using any
algorithm to find a MST.
The edge weights are the
Euclidean distances between the
farms
The easiest option is to use the
O(n2) version of Prim’s algorithm.

	Minimum Spanning Trees
	Tree
	Spanning Tree
	Spanning Tree
	Spanning Tree
	Spanning Tree
	Spanning Tree
	Spanning Tree
	Minimum spanning tree
	Minimum spanning Tree
	Minimum spanning Tree
	MST applications
	Sample problem
	How to solve a MST
	Prim’s algorithm
	Prim’s algorithm
	Prim’s algorithm
	Prim’s algorithm
	Prim’s algorithm (heap)
	Prim’s algorithm demonstration
	Prim’s algorithm demonstration
	Prim’s algorithm demonstration
	Prim’s algorithm demonstration
	Prim’s algorithm demonstration
	Prim’s algorithm demonstration
	Kruskal’s algorithm
	Kruskal’s algorithm
	Kruskal’s algorithm example
	Kruskal’s algorithm example
	Kruskal’s algorithm example
	Kruskal’s algorithm example
	Kruskal’s algorithm example
	Kruskal’s algorithm example
	Kruskal’s algorithm example
	Kruskal’s algorithm example
	Time comparison
	Comparison
	Building Roads�(USACO Silver Dec. ’07 competition)
	Building Roads�(USACO Silver Dec. ’07 competition)

