
Minimum Spanning Trees
What is a MST (Minimum 

Spanning Tree) and how to 
find it with Prim’s

 
algorithm 

and Kruskal’s
 

algorithm



Tree

What is a tree?

Root

Children of 
root node



Spanning Tree
Find a subgraph with minimum 
amount of edges.
There must be a path between 
every pair of vertices.



This is called a spanning tree

Spanning Tree

Answer:



Spanning Tree
What is a spanning tree?

Contains all the vertices of the 
graph and some or all of the edges
Path from any node to any other 
node



Spanning Tree

This graph has

3 different 
spanning trees

A graph can have lots of spanning 
trees



Spanning Tree

Graph

T1 T2 T3



Spanning Tree
How many spanning trees does 
this graph have?

Answer: 8



Minimum spanning tree
Suppose we add weights to the 
graph
Find the spanning tree with the 
minimum sum cost
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Minimum spanning Tree
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Minimum spanning Tree

This is the minimum spanning tree 
of the graph

Graph w(T1 )=6

2

3



MST applications
MST’s can be applied to problems 
like phone networks, computer 
networks and trail networks



Sample problem
Farmer John has ordered a high 
speed internet connection and is 
going to share his connectivity with 
the other farmers.
To minimize cost, he wants to 
minimize the length of optical fiber 
to connect his farm to all the other 
farms



How to solve a MST
One way to solve a MST, is to find 
all the spanning trees of the graph 
and find the minimum one, but
•

 
the number of spanning trees 
grows exponentially with the graph 
size

•
 

Generating all spanning trees for a 
weighted graph is not easy



Prim’s algorithm
One way to solve a MST is with Prim’s
algorithm
Prim’s algorithm builds a tree one vertex 
at a time
Start by selecting a vertex randomly
On each iteration, simply add the nearest 
vertex not in the tree connected to a 
vertex in the tree
The algorithm stops when all the graph’s 
vertices has been included in the tree 
being constructed
This is a greedy algorithm



Prim’s algorithm

The algorithm
let T be a single vertex

while (T has fewer than n vertices)
{

find the smallest edge connecting a vertex 
not in the tree to a vertex in the tree

add it to T
} 



Prim’s algorithm
The algorithm with more detail:

1. Initialize MST to vertex 0. 
2. priority[0] = 0 
3. For all other vertices, set priority[i] = infinity
4. Initialize prioritySet to all vertices; 
5. while prioritySet.notEmpty() 
6. v = remove minimal-priority vertex from 

prioritySet;
7. for each neighbor u of v 
8. // Explore the edge. 
9. w = weight of edge (v, u) 
10 . if w < priority[u] 
11 . priority[u] = w 
12 . endif
13 . endfor
14 . endwhile

Running time: O(n2)



Prim’s algorithm
O(V2) is too slow when finding the 
MST of a very large graph
Some data structures can be used 
to speed it up
Use a heap to remember, for each 
vertex, the smallest edge 
connecting T with that vertex.



Prim’s algorithm (heap)
Prim’s algorithm with a heap:

make a heap of values (vertex,edge,weight(edge)) 
initially (v,-,infinity) for each vertex 

let T be a single vertex x
for each edge f=(u,v)

add (u,f,weight(f)) to heap

while (T has fewer than n vertices) 
let (v,e,weight(e)) be the edge  with the

smallest weight on the heap 
remove (v,e,weight(e)) from the heap 
add v and e to T 
for each edge f=(u,v) 
if u is not already in T 
find value (u,g,weight(g)) in heap 
if weight(f) < weight(g) 
replace (u,g,weight(g)) with

(u,f,weight(f))

Running time: O(m
 

+ n log n)



Prim’s algorithm 
demonstration

Initially, place vertex 0 in the MST 
and set the "priority" of each vertex 
to infinity. 
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Prim’s algorithm 
demonstration

Explore edges from current MST: 
(0, 1) and (0, 2) 

∞ ∞

∞ ∞

∞



Prim’s algorithm 
demonstration

Pick lowest-weight edge (0, 1) to
add => same as selecting lowest-
priority vertex (vertex 1) 
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Prim’s algorithm 
demonstration

Explore edges from newly-added
vertex: (1,3), (1,2) 
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∞
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Prim’s algorithm 
demonstration

Pick vertex with lowest priority
(vertex 3) and explore its edges:

∞

∞



Prim’s algorithm 
demonstration

Continuing, we add vertices 2, 4, 6, 
5 and 7: 



Kruskal’s algorithm
Another way to solve a MST is with 
Kruskal’s algorithm
Kruskal is easier to code and easier to 
understand
This is a greedy algorithm
Basics of algorithm:

Sort edges in order of increasing weight. 
Process edges in sort-order. 
For each edge, add it to the MST if it
does not cause a cycle. 



Kruskal’s algorithm
More advanched algorithm:

1. Initialize MST to be empty;
2. Place each vertex in its own set;

3. Sort edges of G in increasing-order;
4. for each edge e = (u,v) in order
5. if u and v are not in the same set
6. Add e to MST;
7. Compute the union of the two sets;
8. endif
9. endfor
10. return MST 

Running time: O(m
 

log m)



Kruskal’s algorithm 
example

Initially: 

Sort order of edges: (2, 3), (0, 1), (3, 4), 
(1, 3), (4, 6), (3, 6), (1, 2), (0, 2), (2, 5), 
(5, 7)



Kruskal’s algorithm 
example

First edge to add joins "2" and "3" (no cycle): 

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6), 
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)



Kruskal’s algorithm 
example

Next edge in sort order: (0, 1): 

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6), 
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)



Kruskal’s algorithm 
example

Next edge in sort order: (3, 4): 

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6), 
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)



Kruskal’s algorithm 
example

Next edge in sort order: (1, 3): merges two sets (union) 

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6), 
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)



Kruskal’s algorithm 
example

Next edge in sort order: (4, 6): 

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6), 
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)



Kruskal’s algorithm 
example

Next edge in sort order: (3, 6): cannot be added

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6), 
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)

Next two edges also cannot be added: (0, 2) and (1, 2). 



Kruskal’s algorithm 
example

Finally, add (2, 5) and (5, 7): 

Sort order of edges: (2, 3), (0, 1), (3, 4), (1, 3), (4, 6), 
(3, 6), (1, 2), (0, 2), (2, 5), (5, 7)



Time comparison
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Comparison
Prim with a heap is faster than 
Kruskal, but Kruskal is easier to 
code.
Code both and choose the one you 
prefer.



Building Roads 
(USACO Silver Dec. ’07 competition)

Building Roads
Farmer John had acquired several 
new farms!
He wants to connect the farms with 
roads so that he can travel from 
any farm to any other farm via a 
sequence of roads
Roads already connect some of 
the farms.



Building Roads 
(USACO Silver Dec. ’07 competition)

This can be done by using any 
algorithm to find a MST.
The edge weights are the 
Euclidean distances between the 
farms
The easiest option is to use the 
O(n2) version of Prim’s algorithm.
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